19.44. Visualize: Refer to Figure P19.44 in your textbook.

Solve: (a) Q_1 is given as 1000 J. Using the energy transfer equation for the heat engine,

$$Q_{\rm H} = Q_{\rm C} + W_{\rm out} \Rightarrow Q_1 = Q_2 + W_{\rm out} \Rightarrow Q_2 = Q_1 - W_{\rm out}$$

The thermal efficiency of a Carnot engine is

$$\eta = 1 - \frac{T_{\rm C}}{T_{\rm H}} = 1 - \frac{300 \text{ K}}{600 \text{ K}} = 0.50 = \frac{W_{\rm out}}{Q_{\rm I}}$$
$$\Rightarrow Q_2 = Q_1 - \eta Q_1 = Q_1 (1 - \eta) = (1000 \text{ J})(1 - 0.50) = 500 \text{ J}$$

To determine Q_3 and Q_4 , we turn our attention to the Carnot refrigerator, which is driven by the output of the heat engine with $W_{in} = W_{out}$. The coefficient of performance is

$$K = \frac{T_{\rm C}}{T_{\rm H} - T_{\rm C}} = \frac{400 \text{ K}}{500 \text{ K} - 400 \text{ K}} = 4.0 = \frac{Q_{\rm C}}{W_{\rm in}} = \frac{Q_{\rm 4}}{W_{\rm out}} = \frac{Q_{\rm 4}}{\eta Q_{\rm 1}}$$
$$\Rightarrow Q_{\rm 4} = K \eta Q_{\rm 1} = (4.0)(0.50)(1000 \text{ J}) = 2000 \text{ J}$$

Using now the energy transfer equation $W_{in} + Q_4 = Q_3$, we have

$$Q_3 = W_{\text{out}} + Q_4 = \eta Q_1 + Q_4 = (0.50)(1000 \text{ J}) + 2000 \text{ J} = 2500 \text{ J}$$

(**b**) From part (a) $Q_3 = 2500 \text{ J}$ and $Q_1 = 1000 \text{ J}$, so $Q_3 > Q_1$.

(c) Although $Q_1 = 1000$ J and $Q_3 = 2500$ J, the two devices together do not violate the second law of thermodynamics. This is because the hot and cold reservoirs are different for the heat engine and the refrigerator.